

Edexcel AS Physics: Working as a Physicist – Calculation Practice

Praneel Physics

1. A physicist measures the mass of an object to be 2.5 kg. What is the weight of the object on Earth? (P)

Working and Answer:

Weight $W = mg$ where $g = 9.81 \text{ m/s}^2$.

$$W = 2.5 \text{ kg} \times 9.81 \text{ m/s}^2 = 24.525 \text{ N}$$

Answer: 24.53 N

2. A physicist records a temperature change of 15°C . Convert this temperature change to Kelvin. (P)

Working and Answer:

Temperature change in Kelvin is the same as in Celsius.

$$\Delta T = 15 \text{ K}$$

Answer: 15 K

3. A force of 10 N is applied to an object, causing it to accelerate at 2 m/s^2 . What is the mass of the object? (P)

Working and Answer:

Using Newton's second law, $F = ma$.

Rearranging gives $m = \frac{F}{a} = \frac{10 \text{ N}}{2 \text{ m/s}^2} = 5 \text{ kg}$

Answer: 5 kg

4. A physicist measures the distance traveled by a car to be 100 m in 5 s. What is the average speed of the car? (P)

Working and Answer:

$$\text{Average speed } v = \frac{d}{t} = \frac{100 \text{ m}}{5 \text{ s}} = 20 \text{ m/s}$$

Answer: 20 m/s

5. A spring has a spring constant of 200 N/m. If it is compressed by 0.1 m, what is the potential energy stored in the spring? (P)

Working and Answer:

$$\text{Potential energy } PE = \frac{1}{2}kx^2$$

$$PE = \frac{1}{2} \times 200 \text{ N/m} \times (0.1 \text{ m})^2 = 1 \text{ J}$$

Answer: 1 J

6. A physicist uses a pendulum with a length of 2 m. What is the period of the pendulum?
(Use $g = 9.81 \text{ m/s}^2$) (PP)

Working and Answer:

$$\text{Period } T = 2\pi\sqrt{\frac{L}{g}}$$
$$T = 2\pi\sqrt{\frac{2 \text{ m}}{9.81 \text{ m/s}^2}} \approx 2.83 \text{ s}$$

Answer: 2.83 s

7. A car accelerates uniformly from rest to a speed of 25 m/s in 10 s. What is the distance traveled by the car during this time? (PP)

Working and Answer:

Using $d = ut + \frac{1}{2}at^2$ where $u = 0$.

$$\text{First, find } a = \frac{v - u}{t} = \frac{25 \text{ m/s}}{10 \text{ s}} = 2.5 \text{ m/s}^2.$$

$$\text{Then, } d = 0 + \frac{1}{2} \times 2.5 \text{ m/s}^2 \times (10 \text{ s})^2 = 125 \text{ m}$$

Answer: 125 m

8. A 5 kg object is lifted to a height of 10 m. Calculate the gravitational potential energy gained by the object. (PP)

Working and Answer:

$$\text{Potential energy } PE = mgh$$

$$PE = 5 \text{ kg} \times 9.81 \text{ m/s}^2 \times 10 \text{ m} = 490.5 \text{ J}$$

Answer: 490.5 J

9. A wave travels a distance of 300 m in 15 s. What is the speed of the wave? (PP)

Working and Answer:

$$\text{Speed } v = \frac{d}{t} = \frac{300 \text{ m}}{15 \text{ s}} = 20 \text{ m/s}$$

Answer: 20 m/s

10. A circuit has a resistance of 12Ω and a current of 3 A. What is the voltage across the circuit? (PP)

Working and Answer:

Using Ohm's law $V = IR$

$$V = 3 \text{ A} \times 12 \Omega = 36 \text{ V}$$

Answer: 36 V

11. A 2 kg object is moving with a velocity of 4 m/s. Calculate its kinetic energy. (PPP)

Working and Answer:

Kinetic energy $KE = \frac{1}{2}mv^2$

$$KE = \frac{1}{2} \times 2 \text{ kg} \times (4 \text{ m/s})^2 = 16 \text{ J}$$

Answer: 16 J

12. A car of mass 800 kg is traveling at a speed of 20 m/s. What is its momentum? (PPP)

Working and Answer:

$$\text{Momentum } p = mv$$

$$p = 800 \text{ kg} \times 20 \text{ m/s} = 16000 \text{ kg m/s}$$

Answer: 16000 kg m/s

13. A 1000 W heater is used for 2 h. How much energy does it consume in kilowatt-hours? (PPP)

Working and Answer:

$$\text{Energy } E = P \times t$$

Convert time to hours: $t = 2 \text{ h}$

$$E = 1 \text{ kW} \times 2 \text{ h} = 2 \text{ kWh}$$

Answer: 2 kWh

14. A 50 kg diver jumps from a height of 10 m. Calculate the speed of the diver just before hitting the water. (Assume no air resistance) (PPP)

Working and Answer:

$$\text{Using energy conservation: } mgh = \frac{1}{2}mv^2$$

$$gh = \frac{1}{2}v^2$$

$$v = \sqrt{2gh} = \sqrt{2 \times 9.81 \text{ m/s}^2 \times 10 \text{ m}} \approx 14.14 \text{ m/s}$$

Answer: 14.14 m/s

15. A capacitor has a capacitance of $10\ \mu\text{F}$ and is charged to a voltage of 12 V. What is the energy stored in the capacitor? (PPP)

Working and Answer:

$$\text{Energy } E = \frac{1}{2}CV^2$$

$$\text{Convert capacitance: } C = 10 \times 10^{-6} \text{ F}$$

$$E = \frac{1}{2} \times 10 \times 10^{-6} \text{ F} \times (12 \text{ V})^2 = 0.00072 \text{ J}$$

Answer: 0.00072 J

16. A 1500 kg car is traveling at a speed of 30 m/s. Calculate the work done to bring the car to a stop. (PPPP)

Working and Answer:

$$\text{Work done } W = \Delta KE = KE_{\text{initial}} - KE_{\text{final}}$$

$$KE_{\text{initial}} = \frac{1}{2}mv^2 = \frac{1}{2} \times 1500 \text{ kg} \times (30 \text{ m/s})^2 = 675000 \text{ J}$$

$$KE_{\text{final}} = 0$$

$$W = 675000 \text{ J}$$

Answer: 675000 J

17. A 2 kg object is moving in a circular path of radius 5 m with a speed of 10 m/s. Calculate the centripetal force acting on the object. (PPPP)

Working and Answer:

$$\text{Centripetal force } F_c = \frac{mv^2}{r}$$
$$F_c = \frac{2 \text{ kg} \times (10 \text{ m/s})^2}{5 \text{ m}} = 40 \text{ N}$$

Answer: 40 N

18. A 1000 kg satellite is in orbit at a height of 300 km above the Earth's surface. Calculate the gravitational potential energy of the satellite. (Use $g = 9.81 \text{ m/s}^2$) (PPPP)

Working and Answer:

$$\text{Gravitational potential energy } PE = mgh$$

$$\text{Height } h = 300 \text{ km} = 300000 \text{ m}$$

$$PE = 1000 \text{ kg} \times 9.81 \text{ m/s}^2 \times 300000 \text{ m} = 2943000000 \text{ J}$$

Answer: 2943000000 J

19. A 5 kg object is dropped from a height of 20 m. Calculate the speed of the object just before it hits the ground. (Assume no air resistance) (PPPPP)

Working and Answer:

$$\text{Using energy conservation: } mgh = \frac{1}{2}mv^2$$

$$gh = \frac{1}{2}v^2$$

$$v = \sqrt{2gh} = \sqrt{2 \times 9.81 \text{ m/s}^2 \times 20 \text{ m}} \approx 19.8 \text{ m/s}$$

Answer: 19.8 m/s

20. A 3 kg object is moving with a velocity of 15 m/s and collides with a stationary object of mass 2 kg. If the collision is perfectly inelastic, what is the final velocity of the combined mass? (PPPPP)

Working and Answer:

Using conservation of momentum: $m_1v_1 + m_2v_2 = (m_1 + m_2)v_f$

$$3 \text{ kg} \times 15 \text{ m/s} + 2 \text{ kg} \times 0 = (3 \text{ kg} + 2 \text{ kg})v_f$$

$$45 \text{ kg m/s} = 5 \text{ kg} \times v_f$$

$$v_f = \frac{45 \text{ kg m/s}}{5 \text{ kg}} = 9 \text{ m/s}$$

Answer: 9 m/s

21. A 10 kg block is pulled up a frictionless incline of 30° with a force of 100 N. Calculate the acceleration of the block. (PPPPP)

Working and Answer:

$$\text{Net force } F_{net} = F - mg \sin \theta$$

Weight component down the incline:

$$mg \sin \theta = 10 \text{ kg} \times 9.81 \text{ m/s}^2 \times \sin(30^\circ) = 49.05 \text{ N}$$

$$\text{Net force: } F_{net} = 100 \text{ N} - 49.05 \text{ N} = 50.95 \text{ N}$$

$$\text{Using } F = ma, a = \frac{F_{net}}{m} = \frac{50.95 \text{ N}}{10 \text{ kg}} = 5.095 \text{ m/s}^2$$

$$\text{Answer: } 5.1 \text{ m/s}^2$$